
Niching in Evolution Strategies ∗ †

Ofer M. Shir
Leiden Institute of Advanced Computer Science

Universiteit Leiden
Niels Bohrweg 1, 2333 CA Leiden

The Netherlands

oshir@liacs.nl

Thomas Bäck
‡

Leiden Institute of Advanced Computer Science
Universiteit Leiden

Niels Bohrweg 1, 2333 CA Leiden
The Netherlands

baeck@liacs.nl

ABSTRACT
EAs have the tendency to converge quickly into a single so-
lution. Niching methods, the extension of EAs to address
this issue, have been investigated up to date mainly within
the field of Genetic Algorithms (GAs). In our study we
investigate the basis for niching methods within Evolution
Strategies (ES), and propose the first ES niching method.
Results show that this method can reliably find and main-
tain multiple niches even for high-dimensional problems.

Categories and Subject Descriptors: I.2.8 [Comput-
ing Methodologies]: Problem Solving, Control Methods, and
Search.

General Terms: Algorithms, Performance.

Keywords: Evolution Strategies, Niching Methods, Multi-
ple Optima Search.

1. INTRODUCTION
It has been shown that traditional GAs lose their diver-

sity and converge into a single solution [2]. Likewise, the
standard ES is exposed to several strong effects which inter-
rupt the formation and maintenance of multiple solutions
and push the evolution process towards a rapid convergence
into a single solution. In our research we have extended
the ES by a dynamic niching approach to overcome these
limitations.

∗A full version of this paper is available as a Technical Re-
port : TR 2005-01, LIACS, Leiden University, 2005.
Available at http://www.liacs.nl/~oshir.
†This work is part of the research programme of the ’Sticht-
ing voor Fundamenteel Onderzoek de Materie (FOM)’,
which is financially supported by the ’Nederlandse Organ-
isatie voor Wetenschappelijk Onderzoek (NWO)’.
‡Nutech Solutions,
Martin-Schmeisser-Weg 15,
44227 Dortmund, Germany.

Copyright is held by the author/owner.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

Algorithm 1 Greedy Dynamic Peak Identification (DPI)

input: Pop - array of population members

N - population size
q - number of peaks to identify

ρ - niche radius.
Sort Pop in decreasing fitness order
i := 1
NumPeaks := 0
DPS := ∅ (Dynamic Peak Set)

loop until NumPeaks = q or i = N + 1
if Pop[i] is not within ρ of peak in DPS

DPS := DPS ∪ {Pop[i]}
NumPeaks := NumPeaks + 1

endif

i := i + 1

endloop

output: Dynamic Peak Set

2. ES DYNAMIC NICHING
A single generation loop of our proposed algorithm can be

described as follows. The mutation operator is applied, us-
ing a single step-size per individual (self-adaptation is done
in the traditional way [1]). Fitness is then evaluated. The
various fitness-peaks are identified dynamically using the
dynamic peak identification (DPI) algorithm [3], with the
euclidean distance in the decision parameters space as a dis-
tance metric (the method is given as algorithm 1). Using
an estimated so-called niche radius ρ, all the individuals are
classified into those peaks and populate those niches. At
this point a mating restriction scheme is applied, which al-
lows competitive mating only within the niches: every niche
can produce a defined number of offspring, following a fixed
mating resources concept. In particular, a uniform distribu-
tion of the resources to q niches is considered: µ̃ = µ

q
λ̃ = λ

q
,

meaning that each niche has µ̃ parents and produces λ̃ off-
spring in every generation. The λ̃ individuals are produced
within every niche in the following manner - the first par-
ent is chosen via tournament selection, where the second
parent is the best individual in the niche which is differ-
ent than the first parent (this is known as the line breeding

mechanism). Given those λ̃ pairs of parents, the recombi-
nation operator is applied: intermediate recombination for
the strategy parameters and discrete recombination for the
decision parameters. The µ̃ parents of the next generation
are selected as follows: the best η of the λ̃ offspring along
with the best δ = µ̃− η individuals of the current niche. At
this point, additional ω = µ̃ random individuals are newly
added to the whole population, and they will take part in

915

Algorithm 2 ES Dynamic Niching: Generation Loop
Apply Mutation on the population
Evaluate fitness of population and Sort

Compute the Dynamic Peak Set using the DPI (Algo-1)
for every niche i = 1..q produce the next generation:

Generate λ̃ offspring as follows:
Choose 1st parent via Tour-Selec. of the niche

Choose the best indiv. of that niche as the 2nd parent
Apply standard recombination

Select the best η out of the λ̃ offspring and the best
µ̃−η indiv. of the current niche to form the next generation

endfor
Generate additional ω = µ̃ random indiv.,

Join all q niches, to yield the new population

the next round of the dynamic peak identification algorithm.
The algorithm holds two assumptions: q, the expected/desired
number of peaks, is given or can be estimated, and all peaks
are at least in distance 2ρ from each other, where ρ is the
fixed radius of every niche. The formula for determining the
value of the niche radius depends on q, the number of peaks
of the target function:

ρ =
r

n

√
q

where given lower and upper boundary values xk,min, xk,max

of each coordinate in the decision parameters space, r is
defined as follows:

r =
1

2

���� n�
k=1

(xk,max − xk,min)2

Our algorithm is summarized as algorithm 2.

3. EXPERIMENTAL RESULTS

3.1 The Test Functions

1. Himmelblau’s function (minimization; x1, x2 ∈ [−6, 6]):

H(x1, x2) = (x2

1 + x2 − h1)
2 + (x1 + x2

2 − h2)
2

2. L (maximization; ~x ∈ [0, 1]n):

L(~x) =
n�

i=1

sink (l1πxi + l2) · exp � −l3 � xi − l4
l5 � 2 �

3. Ackley’s function (minimization; ~x ∈ [−10, 10]n)

A(~x) = −c1 · exp 	 −c2
 1

n � n

i=1
x2

i � −
− exp 1

n � n

i=1
cos(c3xi) � + c1 + e

4. The function after Fletcher and Powell:

F(~x) = � n

i=1
(Ai − Bi)

2

Ai = � n

j=1
(aij · sin(αj) + bij · cos(αj))

Bi = � n

j=1
(aij · sin(xj) + bij · cos(xj))

where A = (aij), B = (bij), and ~α = (αj) have ran-
dom elements:

aij , bij ∈ [−100, 100] ; ~α ∈ [−π, π]n

We consider minimization with ~x ∈ [−π, π]n.

Table 1: Performance Results
Function M.P.R Global Optima/q

H 1 100% 4/4
L : n = 1 1 100% 5/5
L : n = 2 1 100% 5/5
L : n = 3 1 100% 7/7
L : n = 4 0.9974 100% 5/5
L : n = 10 0.8612 80% 7.2/11
A : n = 2 1 100% 5/5
A : n = 3 1 100% 7/7
A : n = 20 0.9999 100% 41/41
A : n = 30 0.9681 100% 61/61
A : n = 40 0.9940 100% 81/81
F : n = 2 1 100% 4/4
F : n = 4 0.9321 100% 3.4/4
F : n = 10 0.9141 70% 2.8/4

3.2 Performance Criteria
We consider the maximum peak ratio statistic as our nich-

ing performance criterion, which has also been in use in GA
niching methods [3]. Given the fitness of the optima in the

final population � f̃i � q

i=1

, and the actual optima of the ob-

jective function � F̂i � q

i=1

, the maximum peak ratio is defined

for a maximization problem as follows:

MPR = � q

i=1
f̃i� q

i=1
F̂i

Also, given a minimization problem, the MPR is defined as
the actual optima divided by the obtained optima.

3.3 Experimental Results
The results (table 1) refer to an average over multiple

runs on each test function. All simulations were run up to
an upper bound of 10, 000 generations. Three measures are
introduced in the table for each test case (those are mean
values): the MPR, the global optimum location percentage,
and the number of optima found (with respect to q).

4. CONCLUSION
The experimental results show clearly that our method

has achieved its goal of locating multiple solutions for the
given optimization problems. The algorithm performed well
on all test functions, where the excellent results for the high-
dimensional Ackley test-cases should be emphasized.

5. REFERENCES
[1] T. Bäck. Evolutionary algorithms in theory and

practice. Oxford University Press, New York, 1996.

[2] S. W. Mahfoud. Niching Methods for Genetic
Algorithms. PhD thesis, University of Illinois at Urbana
Champaign, 1995.

[3] B. L. Miller and M. J. Shaw. Genetic algorithms with
dynamic niche sharing for multimodal function
optimization. In Proceedings of the 1996 IEEE
International Conference on Evolutionary Computation
(ICEC’96), New York, NY, USA, 1996.

916

